2. 機械・システム工学系 Mechanical and System Engineering Field			MSE-F3
授業科目名 Course Title	流体工学 Fluid Engineering	単位数 Credit	2
担当教員 Instructor	太田淳一OHTA Junichi田中太TANAKA Futoshi太田貴士OHTA Takashi	開講学期 Semester	秋学期 Fall
キーワード Keywords	Two-phase flow, Flow pattern, Fire, Model experiment, Scaling law, Turbulent flow, CFD		

授業概要 Course summary

この講義は、<気液二相流>と<火災科学>、そして<乱流と流れの数値シミュレーション>の3つのコースで構成されている。

This lecture mainly consists of three courses, i.e. gas-liquid two-phase flow, fire science, and turbulent flow and CFD.

1. 太田淳一 OHTA. J

気液二相流について、流動様式線図や基礎方程式を学習する.

In gas-liquid two-phase flows, flow pattern maps and governing equations are introduced.

2. 田中太 TANAKA, F

火災科学について火災実験体験を含めて学習する.

A summary of fire science is studied, including the experience of a fire test.

3. 太田貴士 OHTA, T

乱流と流れの数値シミュレーションを学習する.

Turbulent flow and computational fluid dynamics are explained.

到達目標 Course goal

講義内容の基本的考え方を理解する。

Students are expected to understand the basic concept of lecture contents.

授業内容 Course description

The contents of lecture are as follows:

Gas-liquid two-phase flow course

- 1. Introduction
- 2. What is two-phase flow?
- 3. Methods of analysis
- 4. Flow regime (Flow pattern)
- 5. Flow model

Fire science course

- 1. Fire science and scaling law
- 2. Fire experiment 1, extinguishing a pool fire by water mist
- 3. Fire experiment 2, estimation of a heat release rate generated by model-scale furniture fire
- 4. Water tunnel experiment 1, understanding of the basic concept of the Froude scaling law
- 5. Water tunnel experiment 2, application of the Froude scaling law

Turbulent flow and CFD course

- 1. Background of turbulent flow phenomena and computational fluid dynamics
- 2. Fundamental theory of turbulent flow
- 3. Application of turbulent flow theory
- 4. Introduction to CFD method
- 5. Practice of an example of CFD

準備学習(予習・復習)等 Preparation / Review

毎回の講義において、講師は学生に予習と復習について指示をする。

Lecturer instructs students to prepare and to review a lesson in every class.

授業形式 Class style

講義

Lecture

成績評価の方法・基準 Method of evaluation

出席、レポート

Attendance, Report

教科書・参考書等 Textbook and material

なし

None

受講要件·予備知識 Prerequisite

機械工学に関する基礎的な知識が必要

A basic mechanical engineering knowledge is needed

その他の注意事項 Note